מחקר חדש מגלה כי במצבים מסוימים עטלפים מעדיפים את חוש הראייה על פני חוש הסונר

מחקר
מחקר חדש מגלה כי במצבים מסוימים עטלפים מעדיפים את חוש הראייה על פני חוש הסונר
העטלפים ניחנו ב'חוש שישי', הוא חוש הסונר (גלי קול המשוגרים ומוחזרים מעצמים מהסביבה), כדי להתמצא ולנוע בסביבה כשחשוך במיוחד. אבל החוקרים במעבדת העטלפים בגן הזואולוגי של אוניברסיטת תל אביב, הגדולה מסוגה בעולם, גילו לאחרונה כי במצבים מסוימים מעדיפים היונקים המעופפים לשלב בין חוש הראייה לחוש הייחודי, ושפכו אור חדש על הנושא.
"עובדה ידועה היא כי לעטלפים יש חוש מיוחד במינו, המאפשר להם להתמצא בסביבה גם בחשיכה מוחלטת," אומר פרופ' יוסי יובל מביה"ס לזואולוגיה בפקולטה למדעי החיים ע"ש ג'ורג' ס' וייז, שהוביל את המחקר. "החוש, המכונה אקולוקציה, פועל בדומה לסונר המותקן בספינות, שתפקידו לסרוק את הסביבה התת-מימית: העטלפים משדרים גלי קול ומעבדים את ההדים המוחזרים מעצמים בסביבה. עובדה זו יצרה בקרב חלק מהציבור תפיסה מוטעית, לפיה עטלפים הם עיוורים. למעשה כל העטלפים רואים, ולעטלפי פירות מהסוג שחקרנו יש ראייה מצוינת, שבלילה היא אף טובה יותר מזו של בני אדם. במחקר ביקשנו לבדוק כיצד הם משלבים בין שני החושים: חוש הראייה והסונר."
המחקר, שנערך על ידי ד"ר סאשה דנילוביץ מביה"ס לזואולוגיה ובשיתוף עם ביה"ס סגול למדעי המוח, העלה כי במצבים מסוימים עטלפי פירות מסתמכים על חוש הראייה שלהם יותר מאשר על הסונר. יותר מכך, הם מסוגלים לתרגם את המידע הנקלט באמצעות חוש הסונר לתמונה ויזואלית. מאמר בנושא התפרסם בכתב העת Science Advances.
רואה 6:6. עטלף פירות במושבת העטלפים בגן הזואולוגי (צילום: ינס ריידל)
המחקר נערך באוכלוסיית עטלפי פירות החיה בגן הזואולוגי של האוניברסיטה. בשלב הראשון לימדו החוקרים את העטלפים להבחין בין קובייה חלקה לקובייה מחוררת בחשיכה מוחלטת, כלומר באמצעות הסונר בלבד. כל עטלף קיבל מנת מזון כאשר נחת על הקובייה 'הנכונה', וכך למד להעדיף אותה.
לאחר מכן הפכו החוקרים את המצב: הקוביות נחשפו לאור, אך הונחו בתוך תיבות פלסטיק שקופות וזהות שלא ניתן להבחין ביניהן באמצעות הסונר, מכיוון שהן מחזירות הדים זהים. העטלפים, שלמעשה ראו עכשיו את הקוביות לראשונה, ידעו לבחור בקובייה הנכונה. "המשמעות היא שהם יודעים לתרגם את המידע שנקלט בסונר לתמונה ויזואלית, לפחות באופן חלקי," מסביר פרופ' יובל.
בהמשך למדו העטלפים לבחור בין גליל למנסרה כאשר שני החושים (סונר וראייה) פעילים. לאחר מכן הם נחשפו שוב באור לשני העצמים, אלא שהפעם היו העצמים נתונים בקופסאות שקופות, המנטרלות את השימוש בסונר. העטלפים ביצעו את המשימה בהצלחה באמצעות חוש הראייה בלבד. לעומת זאת בחשיכה, כשהסונר בלבד עמד לרשותם, הם לא הצליחו להבחין בין העצמים. ממצא זה מעיד על כך שהם למדו לזהות את העצמים באמצעות ראייה ולא באמצעות סונר.
בחלקו השלישי של המחקר התעופפו העטלפים בפרוזדור המתפצל לשתי מנהרות: מנהרה שהקצה שלה פתוח, ומנהרה חסומה בסופה. "כשחסמנו את המנהרה בלוח שחור העטלפים תמיד עפו לעברו, כנראה משום שהלוח השחור נראה להם כפתח של מערה", אומר פרופ' יובל. "רק בקרבת הלוח הם הבחינו, באמצעות הסונר, שהמנהרה למעשה חסומה והסתובבו לאחור. כלומר: חוש הראיה היה הדומיננטי בקבלת ההחלטה לעוף לעבר 'הפתח' המדומה, אך חוש הסונר מנע התנגשות במחסום. המשמעות היא שהעטלפים מסוגלים לתמרן בין שני החושים באופן גמיש." לעומת זאת כשהפתח נחסם בלוח לבן, העטלפים תמיד בחרו במנהרה הפתוחה.
"במחקר שלנו הראינו במגוון שיטות כיצד העטלפים משלבים בין שני חושים עיקריים – חוש הראייה והסונר", מסכם פרופ' יובל. "גילינו שבמצבים רבים הם מסתמכים יותר על חוש הראייה ואף ממירים את המידע שנקלט בסונר לתמונה ויזואלית. לעומת זאת במצבים מסוימים, למשל כאשר הם מתקרבים לקיר, הם מסוגלים 'להחליף' ולהסתמך על הסונר".
"הבנת השילוב בין החושים אצל העטלפים עשויה לתרום גם להבנת השימוש שעושים בני אדם במידע רב-חושי (למשל כשאנחנו שומעים מכונית וגם רואים אותה מתקרבת), ואף לסייע בפתרון שאלות מרכזיות לגבי עיבוד חושי והאופן בו המוח משלב מידע המתקבל מחושים שונים", הוא מסכם.
מחקר
החוקרים גילו מנגנון מרכזי בהתפתחות המחלה ומצאו חומר המנטרל אותו בשלבים המוקדמים
"מוחם של חולי פרקינסון מתאפיין בהיווצרות משקעים גדולים של חלבון מסוים," מסביר פרופ' אורי אשרי, ראש בית הספר סגול למדעי המוח. "משקעים אלה קשורים לתהליך הדרגתי שבו מתים תאים באזור 'החומר השחור' שבמוח האמצעי (substantia nigra). מות התאים גורם לירידה בשחרור המוליך העצבי דופמין במוח, וכתוצאה מכך לבעיות מוטוריות ובהמשך קוגניטיביות. הבעיה היא שבאמצעים המקובלים ניתן להבחין במשקעים אלו רק כשהם גדולים יחסית, כלומר בשלב מתקדם של המחלה, כש-75% מתאי החומר השחור כבר מתו, ולמעשה כבר לא ניתן לטפל בה. אנחנו חיפשנו דרך לאבחן את מחלת הפרקינסון בשלב מוקדם הרבה יותר, וגם בדקנו טיפול אפשרי למחלה הקשה, שנחשבת היום לחשוכת מרפא."
השיטה החדשה לאבחון של פרקינסון, שפיתחה קבוצת המחקר בהובלת פרופ' אשרי, מאפשרת לזהות את המחלה כבר בשלביה המוקדמים. שימוש בטכניקה מיקרוסקופית חדשנית המכונה סופר-רזולוציה, מאפשר זיהוי משקעי חלבון האופייניים למחלה עוד כשהם קטנים מאוד. המחקר בוצע על ידי ד"ר דנה בר-און, בשיתוף עם מעבדות באוניברסיטת קיימברידג' באנגליה, במכון מקס פלאנק בגוטינגן, ובאוניברסיטת לודויג מאקסימיליאן במינכן שבגרמניה. מאמר אודות התגלית התפרסם בכתב העת,Acta Neuropathologica הנחשב למוביל בתחום המחלות הנוירולוגיות.
המחקר בוצע על ידי ד"ר דנה בר-און, בשיתוף עם מעבדות באוניברסיטת קיימברידג' באנגליה, במכון מקס פלאנק בגוטינגן, ובאוניברסיטת לודויג מאקסימיליאן במינכן שבגרמניה. המאמר התפרסם בכתב העת Acta Neuropathologica הנחשב למוביל בתחום המחלות הנוירולוגיות.
במהלך המחקר, יצרו השותפים בקיימברידג' עכברי מודל למחלת פרקינסון, המבטאים את החלבון אלפא-סינוקלאין האנושי עם מוטציה שגורמת באופן ספונטני ליצירת משקעים - צורה זו של החלבון נמצאה במשקעים של חולים לאחר המוות. כשעכברים אלה הגיעו לגיל 9-6 חודשים נצפו אצלם תסמיני פרקינסון.
בשלב זה נעזרו החוקרים בטכנולוגיית הסופר-רזולוציה כדי לבחון את מוחם של העכברים. "גילינו כי כבר בשלב מוקדם של המחלה מופיעים בתאי החומר השחור משקעים קטנים של החלבון אלפא-סינוקלאין," אומרת ד"ר בר-און. "עוד מצאנו שהמשקעים הקטנים הולכים ומתרבים עם התפתחות המחלה, בניגוד למשקעים הגדולים שהיכרנו, שמספרם נותר קבוע. מכך היסקנו כי המשקעים הקטנים הם החומר הרעיל הגורם למחלה. יותר מכך, הצענו השערה שייתכן כי המשקעים הגדולים הינם רק מנגנון פיצוי של המוח במאבקו נגד המשקעים הקטנים הרעילים."
בעקבות התגלית, שותף למחקר ממכון מקס פלאנק בגרמניה, המתמחה בפיתוח חומרים נוגדי משקעים, הצליח לפתח חומר בשם Anle 138b, המונע את הצטברות משקעי האלפא-סינוקלאין. עכברי המודל טופלו בחומר, ומצבם השתפר משמעותית: חלה עלייה בשחרור הדופמין במוחם, והתנהגותם שבה לנורמה.
"במחקר גילינו מנגנון מרכזי של מחלת פרקינסון, שלא היה מוכר עד כה, ומצאנו חומר המנטרל את המנגנון, שעשוי לשמש בסיס לפיתוח תרופה," מסכם פרופ' אשרי. "כיום נמצאת התרופה הפוטנציאלית בשלב הניסויים הקליניים. כמו כן אנחנו מחפשים דרך לאתר משקעי אלפא-סינוקלאין קטנים, כבר בשלב מוקדם של המחלה, אצל בני אדם. מכיוון שלא ניתן לחדור לשם כך למוח, אנחנו מחפשים את המשקעים הללו ברקמות/הפרשות נגישות יותר בגוף - בדגימות עור, ובעתיד אולי אף בדמעות של חולים וחולים פוטנציאליים."